Research

novosparc.jpg
self_organization1.jpg
netrecon.jpg
info_flow.jpg
sRNAs1.jpg

We are interested in how local changes, responses and interactions between cells lead to global coordinated effects such as multicellular self-organization, how can we use these insights to design optimal cellular interactions, and how can we infer such interactions, correlations and geometric structure in single cell data to reveal the biological processes and contexts that cellular populations are driven by. 

 

More broadly, we are interested in studying the emergence of complex behavior out of the interactions of simple dynamic units in biological systems. In the past we have focused on genes and their products that interact via different types of regulations to form regulatory networks underlying cellular function. We are now focusing on interacting cells that form tissues and the ways by which these interactions determine the global state of the functioning (or dysfunctioning) tissue.

 

Revealing latent structure in single cell data, and embeddings for biological data

Moriel, N.*, Senel, E.*, Friedman, N., Rajewsky, N., Karaiskos, N., and Nitzan, M. 2021. NovoSpaRc: flexible spatial reconstruction of single-cell gene expression with optimal transport. Nature Protocols, pp. 1-24.

Nitzan, M. and Brenner, M. 2021. Revealing lineage-related signals in single-cell gene expression using random matrix theory. Proceedings of the National Academy of Sciences (PNAS), 118(11).

Nitzan, M.*, Karaiskos, N.*, Friedman, N. and Rajewsky, N. 2019. Gene expression cartography. Nature, 576(7785), pp.132-137.

{Forrow, A., Hutter, J.C., Nitzan, M., Rigollet, P., Schiebinger, G. and Weed, J.}# 2018. Statistical optimal transport via factored couplings. arXiv 1806.07348. AISTATS19.

 

Modelling and design of multi-cellular expression patterns and self-organization

 

Guo, Y., Nitzan, M. and Brenner, M.P., 2021. Programming cell growth into different cluster shapes using diffusible signals. PLOS Computational Biology, 17(11), e1009576

Inference of network structure, statistics and information flow

Nitzan, M., Casadiego, J. and Timme, M. 2017. Revealing physical interactions from statistics of collective dynamics. Science Advances, 3(2), p.e1600396. 

 

Casadiego, J., Nitzan, M., Hallerberg, S. and Timme, M. 2017. Model-free inference of direct network interactions from nonlinear collective dynamics. Nature Communications, 8.

Network/graph statistics and information flow

Nitzan, M., Steiman-Shimony, A., Altuvia, Y., Biham, O. and Margalit, H., 2014. Interactions between distant ceRNAs in regulatory networks. Biophysical journal, 106(10), pp.2254-2266.

 

Rosenfeld, N., Nitzan, M. and Globerson, A., 2016, February. Discriminative Learning of Infection Models. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining (pp. 563-572). ACM.

 

Nitzan, M., Katzav, E., Kuehn, R. and Biham, O., 2016. Distance distribution in configuration-model networks. Physical Review E, 93(6), p.062309.

 

Katzav, E., Nitzan, M., ben-Avraham, D., Krapivsky, P.L., Kühn, R., Ross, N. and Biham, O., 2015. Analytical results for the distribution of shortest path lengths in random networks. Europhysics Letters, 111(2), p.26006.

Multi-layered regulatory networks and their dynamics

Nitzan, M., Rehani, R. and Margalit, H. 2017. Integration of bacterial small RNAs in regulatory networks. Annual Review of Biophysics, 46(1). 

 

Nitzan, M., Fechter, P., Peer, A., Altuvia, Y., Bronesky, D., Vandenesch, F., Romby, P., Biham, O. and Margalit, H., 2015. A defense-offense multi-layered regulatory switch in a pathogenic bacterium. Nucleic acids research, 43(3), pp.1357-1369.      

 

Nitzan, M., Shimoni, Y., Rosolio, O., Margalit, H. and Biham, O., 2015. Stochastic analysis of bistability in coherent mixed feedback loops combining transcriptional and posttranscriptional regulations. Physical Review E, 91(5), p.052706.

 

Sajman, J., Zenvirth, D., Nitzan, M., Margalit, H., Simpson-Lavy, K.J., Reiss, Y., Cohen, I., Ravid, T. and Brandeis, M., 2015. Degradation of Ndd1 by APC/CCdh1 generates a feed forward loop that times mitotic protein accumulation. Nature communications, 6.

 

Nitzan, M., Wassarman, K.M., Biham, O. and Margalit, H., 2014. Global regulation of transcription by a small RNA: a quantitative view. Biophysical journal, 106(5), pp.1205-1214.

 

Nitzan, M., Steiman-Shimony, A., Altuvia, Y., Biham, O. and Margalit, H., 2014. Interactions between distant ceRNAs in regulatory networks. Biophysical journal, 106(10), pp.2254-2266.